Deafness and permanently reduced potassium channel gene expression and function in hypothyroid Pit1dw mutants.

نویسندگان

  • Mirna Mustapha
  • Qing Fang
  • Tzy-Wen Gong
  • David F Dolan
  • Yehoash Raphael
  • Sally A Camper
  • R Keith Duncan
چکیده

The absence of thyroid hormone (TH) during late gestation and early infancy can cause irreparable deafness in both humans and rodents. A variety of rodent models have been used in an effort to identify the underlying molecular mechanism. Here, we characterize a mouse model of secondary hypothyroidism, pituitary transcription factor 1 (Pit1(dw)), which has profound, congenital deafness that is rescued by oral TH replacement. These mutants have tectorial membrane abnormalities, including a prominent Hensen's stripe, elevated beta-tectorin composition, and disrupted striated-sheet matrix. They lack distortion product otoacoustic emissions and cochlear microphonic responses, and exhibit reduced endocochlear potentials, suggesting defects in outer hair cell function and potassium recycling. Auditory system and hair cell physiology, histology, and anatomy studies reveal novel defects of hormone deficiency related to deafness: (1) permanently impaired expression of KCNJ10 in the stria vascularis of Pit1(dw) mice, which likely contributes to the reduced endocochlear potential, (2) significant outer hair cell loss in the mutants, which may result from cellular stress induced by the lower KCNQ4 expression and current levels in Pit1(dw) mutant outer hair cells, and (3) sensory and strial cell deterioration, which may have implications for thyroid hormone dysregulation in age-related hearing impairment. In summary, we suggest that these defects in outer hair cell and strial cell function are important contributors to the hearing impairment in Pit1(dw) mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impaired surface expression and conductance of the KCNQ4 channel lead to sensorineural hearing loss

KCNQ4, a voltage-gated potassium channel, plays an important role in maintaining cochlear ion homoeostasis and regulating hair cell membrane potential, both essential for normal auditory function. Mutations in the KCNQ4 gene lead to DFNA2, a subtype of autosomal dominant non-syndromic deafness that is characterized by progressive sensorineural hearing loss across all frequencies. Despite recent...

متن کامل

Study the Expression of marA Gene in Ciprofloxacin and Tetracycline Resistant Mutants of Esherichia coli

MarA activates two membrane dependent mechanisms of resistance to different antibiotics, such as ciprofloxacin and tetracycline, including promotion of outflux and inhibition of influx of antibiotics. Thus, MarA causes multiple antibiotic resistance phenotype. The activation of these mechanisms needs overexpression of marA. This could happen through mutation in marR. Thus, the aim of this study...

متن کامل

Study the Expression of marA Gene in Ciprofloxacin and Tetracycline Resistant Mutants of Esherichia coli

MarA activates two membrane dependent mechanisms of resistance to different antibiotics, such as ciprofloxacin and tetracycline, including promotion of outflux and inhibition of influx of antibiotics. Thus, MarA causes multiple antibiotic resistance phenotype. The activation of these mechanisms needs overexpression of marA. This could happen through mutation in marR. Thus, the aim of this study...

متن کامل

Antioxidant and immune gene expression in zebra fish (Danio rerio)

Iodine is the main ingredient produced by the thyroid hormone, which playa a central role in the metabolism and the immune system. The present study aims to evaluate the effects of feeding Artemia fransiscana enriched with potassium iodide on antioxidant and immune gene expression in zebra fish (Danio rerio). Zebra larvae with an average weight of 2±0.01 mg were randomly distributed into 4 trea...

متن کامل

Autonomous functions of murine thyroid hormone receptor TRα and TRβ in cochlear hair cells

Thyroid hormone acts on gene transcription by binding to its nuclear receptors TRα1 and TRβ. Whereas global deletion of TRβ causes deafness, global TRα-deficient mice have normal hearing thresholds. Since the individual roles of the two receptors in cochlear hair cells are still unclear, we generated mice with a hair cell-specific mutation of TRα1 or deletion of TRβ using the Cre-loxP system. H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 4  شماره 

صفحات  -

تاریخ انتشار 2009